novaform ${ }^{\circledR}$ SK

Gasket Constants acc. DIN 28090-1, AD-Merkblatt B7, DIN V 2505

DIN 28090 Part 1 (9/95) (DIN E 2505 Part 2)
AD-Merkblatt B7
DIN V 2505

P_{1}	thick. h_{D}	σ_{vu}	σ_{vo}	m	$\sigma_{\text {BO }}$					$b_{D}: h_{D}$	$\mathrm{k}_{0} \times \mathrm{K}_{\text {D }}$	k_{1}
[bar]	[mm]	[$\mathrm{N} / \mathrm{mm}^{2}$]	[$\mathrm{N} / \mathrm{mm}^{2}$]		[$\mathrm{N} / \mathrm{mm}^{2}$]						[N / mm]	[mm]
					$20^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$400^{\circ} \mathrm{C}$			
1	1.0	<10	360	1.3	360	300	200	150	150	10:1	$10 \times \mathrm{b}_{\mathrm{D}}$	$1.3 \times \mathrm{b}_{\text {D }}$
	1.5	<10	300	1.3	300	250	200	150	150	6.7:1	$10 \times b_{\text {D }}$	$1.3 \times \mathrm{b}_{\mathrm{D}}$
	2.0	<10	300	1.3	300	200	180	150	150	$5: 1$	$10 \times b_{D}$	$1.3 \times \mathrm{b}_{\mathrm{D}}$
	3.0	<10	200	1.3	200	150	130	100	100	$3.3: 1$	$10 \times b_{\text {D }}$	$1.3 \times \mathrm{b}_{\mathrm{D}}$
5	1.0	17	360	1.3	360	300	200	150	150	10:1	$17 \times \mathrm{b}_{\mathrm{D}}$	$1.3 \times \mathrm{b}_{\mathrm{D}}$
	1.5	20	300	1.3	300	250	200	150	150	6.7:1	$20 \times \mathrm{b}_{\text {D }}$	$1.3 \times \mathrm{b}_{\mathrm{D}}$
	2.0	25	300	1.3	300	200	180	150	150	$5: 1$	$25 \times b_{\text {D }}$	$1.3 \times \mathrm{b}_{\mathrm{D}}$
	3.0	35	200	1.3	200	150	130	100	100	3.3:1	$35 \times \mathrm{b}_{\text {D }}$	$1.3 \times \mathrm{b}_{\mathrm{D}}$
10	1.0	30	360	1.3	360	300	200	150	150	10:1	$30 \times \mathrm{b}_{\text {D }}$	$1.3 \times \mathrm{b}_{\mathrm{D}}$
	1.5	35	300	1.3	300	250	200	150	150	6.7:1	$35 \times \mathrm{b}_{\mathrm{D}}$	$1.3 \times \mathrm{b}_{\mathrm{D}}$
	2.0	44	300	1.3	300	200	180	150	150	$5: 1$	$44 \times \mathrm{b}_{\mathrm{D}}$	$1.3 \times \mathrm{b}_{\mathrm{D}}$
	3.0	60	200	1.3	200	150	130	100	100	3.3:1	$60 \times \mathrm{b}_{\mathrm{D}}$	$1.3 \times \mathrm{b}_{\mathrm{D}}$

$\sigma_{\mathrm{Vu}} \quad$ Determined at laekage class $\mathrm{L}_{1,0}$
$\mathrm{m} \quad$ The m -factor is a value to describe the minimum surface pressure under operating conditions. Up to now there does not exist a definite test specification. The m-factor can be looked at in different ways and depends on the tightness class, the temperature and the surface pressure in the installed state. Within the Brite EuRam research project m-factors between 1.3 and 3.8 were found as average values for graphite gaskets. The user may judge to calculate with different factors (e.g. $m=2$).

Please note: standard laboratory equipment. In view of the variety of different installation and operation conditions and process engineering options, there is no basis for warranty claims
Version: v7e referring to the behaviour of the sealing joint. Subject to technical changes and printing errors.

